1. 电商行业案例
案例 1:商品上架自动化
公司规模: 中型电商平台
业务挑战: 每日需要上架 500+ 新商品,人工操作效率低、易出错
解决方案: 部署商品上架 Agent
实现方案
┌──────────────────────────────────────────────────────────────┐ │ 商品上架自动化系统 │ ├──────────────────────────────────────────────────────────────┤ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │ │ 数据 │ │ 图片 │ │ 定价 │ │ 上架 │ │ │ │ 解析 │──>│ 处理 │──>│ 计算 │──>│ 执行 │ │ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │ │ │ │ │ ▼ ▼ │ │ ┌──────────┐ ┌──────────┐ │ │ │ 供应商 │ │ 店铺 │ │ │ │ 数据源 │ │ 平台 │ │ │ └──────────┘ └──────────┘ │ └──────────────────────────────────────────────────────────────┘
核心代码
class ProductListingAgent:
"""商品上架 Agent"""
async def process_new_products(self, supplier_data: list):
"""处理新商品上架"""
results = []
for product in supplier_data:
# 1. 解析商品数据
parsed = await self._parse_product_data(product)
# 2. 处理商品图片
images = await self._process_images(parsed["image_urls"])
# 3. 计算价格(考虑利润率、运费、平台费用)
price = await self._calculate_pricing(parsed)
# 4. 生成商品描述
description = await self._generate_description(parsed)
# 5. 执行上架
listing = await self._publish_to_platform({
"name": parsed["name"],
"price": price,
"images": images,
"description": description,
"category": parsed["category"],
"attributes": parsed["attributes"]
})
results.append({
"product_id": product["id"],
"listing_id": listing["id"],
"status": "success"
})
return results
async def _calculate_pricing(self, product: dict) -> float:
"""智能定价计算"""
base_cost = product["cost"]
# 考虑因素
platform_fee = 0.05 # 平台佣金 5%
shipping_cost = product.get("shipping", 5.0)
target_margin = 0.20 # 目标利润率 20%
# 计算售价
price = (base_cost + shipping_cost) / (1 - platform_fee - target_margin)
return round(price, 2)
成效
| 指标 | 实施前 | 实施后 | 提升 |
|---|---|---|---|
| 上架效率 | 20件/小时 | 200件/小时 | 10x |
| 错误率 | 5% | 0.1% | 50x |
| 人工成本 | 3人专职 | 1人监控 | 67% |
案例 2:竞品价格监控
公司规模: 电商运营团队
业务挑战: 需要实时监控竞品价格变化,调整定价策略
解决方案: 部署价格监控 Agent
实现方案
class PriceMonitoringAgent:
"""竞品价格监控 Agent"""
def __init__(self):
self.agent = Agent(Config(
name="price_monitor",
role="价格监控助手",
goal="实时监控竞品价格并预警"
))
self.competitors = self._load_competitor_list()
async def monitor_prices(self):
"""执行价格监控"""
all_prices = {}
for competitor in self.competitors:
prices = await self._scrape_competitor(competitor)
all_prices[competitor["name"]] = prices
# 价格分析
analysis = self._analyze_prices(all_prices)
# 检测异常
alerts = self._detect_changes(analysis)
# 发送告警
if alerts:
await self._send_price_alerts(alerts)
return analysis
async def _scrape_competitor(self, competitor: dict) -> list:
"""抓取竞品价格"""
browser = BrowserTool()
products = []
for category_url in competitor["category_urls"]:
await browser.goto(category_url)
# 滚动加载
await browser.scroll_multiple(3)
# 提取价格
page_products = await browser.evaluate("""
Array.from(document.querySelectorAll('.product-item'))
.map(item => ({
name: item.querySelector('.title')?.textContent?.trim(),
price: parseFloat(item.querySelector('.price')?.dataset?.value || 0),
url: item.querySelector('a')?.href,
in_stock: item.querySelector('.stock-status')?.textContent?.includes('In Stock')
}))
""")
products.extend(page_products)
return products
def _detect_changes(self, analysis: dict) -> list:
"""检测价格变化"""
alerts = []
for product, data in analysis["price_history"].items():
if len(data) < 2:
continue
current = data[-1]["price"]
previous = data[-2]["price"]
change_pct = (current - previous) / previous * 100
if abs(change_pct) > 10: # 价格变动超过 10%
alerts.append({
"product": product,
"change_pct": round(change_pct, 2),
"direction": "increase" if change_pct > 0 else "decrease",
"competitor": data[-1]["competitor"]
})
return alerts
成效
- 价格变动发现时间: 24小时 → 实时
- 定价响应速度: 1天 → 1小时
- 价格竞争力: 提升 15%
2. 金融行业案例
案例 3:客户服务自动化
公司规模: 银行客服部门
业务挑战: 客服人员处理大量重复性咨询,工作负荷大
解决方案: 部署客服 Agent,处理常见咨询
实现方案
┌──────────────────────────────────────────────────────────────┐ │ 智能客服系统 │ ├──────────────────────────────────────────────────────────────┤ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │ │ 问题 │ │ 意图 │ │ 知识 │ │ 回复 │ │ │ │ 接收 │──>│ 识别 │──>│ 检索 │──>│ 生成 │ │ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │ │ │ │ ┌──────────────────────────────────────┴──────────┐ │ │ │ 人工介入判断 │ │ │ └────────────────────────────────────────────────┘ │ │ │ │ │ │ ▼ ▼ │ │ ┌──────────┐ ┌──────────┐│ │ │ 转接 │ │ 智能 ││ │ │ 人工 │ │ 回复 ││ │ └──────────┘ └──────────┘│ └──────────────────────────────────────────────────────────────┘
核心代码
class BankingCustomerServiceAgent:
"""银行客服 Agent"""
def __init__(self):
self.agent = Agent(Config(
name="banking_cs",
role="银行客服助手",
goal="处理客户咨询,提供准确信息"
))
self.knowledge_base = self._load_knowledge_base()
self.escalation_keywords = ["投诉", "经理", "愤怒", "法律"]
async def handle_inquiry(self, message: str, customer_id: str) -> dict:
"""处理客户咨询"""
# 1. 理解问题意图
intent = await self._understand_intent(message)
# 2. 检测情绪和紧急程度
sentiment = await self._analyze_sentiment(message)
# 3. 检查是否需要人工介入
if self._needs_human_support(message, sentiment):
return await self._escalate_to_human(message, customer_id, sentiment)
# 4. 检索知识库
relevant_docs = self._search_knowledge_base(intent, message)
# 5. 生成回复
response = await self._generate_response(intent, relevant_docs)
# 6. 记录对话
await self._log_interaction(customer_id, intent, response)
return {
"response": response,
"intent": intent,
"requires_followup": self._needs_followup(intent)
}
async def _handle_account_inquiry(self, customer_id: str) -> dict:
"""处理账户查询"""
account = await self._get_account_info(customer_id)
return {
"response": f"""您的账户信息如下:
- 账户号码: {account['number']}
- 账户类型: {account['type']}
- 当前余额: ¥{account['balance']:,}
- 上次交易: {account['last_transaction']}
如需更多帮助,请告诉我。""",
"account_info": account
}
async def _handle_transfer_inquiry(self, customer_id: str, transfer_info: dict) -> dict:
"""处理转账咨询"""
account = await self._get_account_info(customer_id)
# 验证账户余额
if account["balance"] < transfer_info["amount"]:
return {
"response": "抱歉,您的账户余额不足,无法完成此转账。",
"status": "failed"
}
# 检查转账限额
if transfer_info["amount"] > account["daily_limit"]:
return {
"response": f"单笔转账限额为 ¥{account['daily_limit']:,},请降低转账金额。",
"status": "exceeded_limit"
}
# 执行转账
result = await self._execute_transfer(customer_id, transfer_info)
return {
"response": f"转账成功!交易编号: {result['txn_id']}",
"status": "success",
"transaction": result
}
成效
| 指标 | 实施前 | 实施后 | 提升 |
|---|---|---|---|
| 首次响应时间 | 2分钟 | 3秒 | 40x |
| 咨询解决率 | 65% | 85% | 31% |
| 客服人员满意度 | 60% | 85% | 42% |
| 24小时服务 | 否 | 是 | - |
案例 4:合规检查自动化
公司规模: 金融机构
业务挑战: 大量交易需要实时合规检查,人工审查效率低
解决方案: 部署合规检查 Agent
实现方案
class ComplianceCheckAgent:
"""合规检查 Agent"""
async def check_transaction(self, transaction: dict) -> dict:
"""
检查交易合规性
Args:
transaction: 交易信息
Returns:
合规检查结果
"""
checks = []
# 1. 金额检查
amount_check = await self._check_amount_limits(transaction)
checks.append(amount_check)
# 2. 频率检查
frequency_check = await self._check_frequency_rules(transaction)
checks.append(frequency_check)
# 3. 黑名单检查
blacklist_check = await self._check_blacklist(transaction)
checks.append(blacklist_check)
# 4. 可疑交易检测
suspicious_check = await self._detect_suspicious_activity(transaction)
checks.append(suspicious_check)
# 综合判断
all_passed = all(c["passed"] for c in checks)
high_risk = any(c["risk_level"] == "high" for c in checks)
if all_passed:
return {
"status": "approved",
"checks": checks,
"message": "交易通过合规检查"
}
elif high_risk:
return {
"status": "rejected",
"checks": checks,
"message": "交易被拒绝:高风险"
}
else:
return {
"status": "review",
"checks": checks,
"message": "交易需要人工审核"
}
async def _detect_suspicious_activity(self, transaction: dict) -> dict:
"""可疑交易检测"""
risk_score = 0
reasons = []
# 检测非常规时间交易
if self._is_unusual_time():
risk_score += 20
reasons.append("非常规交易时间")
# 检测大额交易
if transaction["amount"] > 100000:
risk_score += 30
reasons.append("大额交易")
# 检测频繁交易
recent_count = await self._count_recent_transactions(
transaction["account_id"],
hours=24
)
if recent_count > 10:
risk_score += 25
reasons.append("交易频率异常")
# 检测新账户大额交易
if await self._is_new_account(transaction["account_id"], days=30):
if transaction["amount"] > 50000:
risk_score += 20
reasons.append("新账户大额交易")
return {
"check": "suspicious_activity",
"passed": risk_score < 50,
"risk_score": risk_score,
"risk_level": "high" if risk_score >= 50 else "medium" if risk_score >= 30 else "low",
"reasons": reasons
}
成效
- 合规检查覆盖率: 100%
- 误报率降低: 40%
- 检查时间: 5分钟 → 实时
3. 人力资源案例
案例 5:简历筛选自动化
公司规模: 大型企业 HR 部门
业务挑战: 收到大量简历,需要高效筛选合适候选人
解决方案: 部署简历筛选 Agent
实现方案
class ResumeScreeningAgent:
"""简历筛选 Agent"""
def __init__(self):
self.agent = Agent(Config(
name="resume_screener",
role="简历筛选助手",
goal="高效筛选匹配候选人"
))
self.job_requirements = {}
def load_job_requirements(self, job_id: str, requirements: dict):
"""加载岗位需求"""
self.job_requirements[job_id] = requirements
async def screen_resume(self, resume: dict, job_id: str) -> dict:
"""筛选简历"""
requirements = self.job_requirements.get(job_id)
# 1. 基本条件匹配
basic_match = self._check_basic_requirements(resume, requirements)
if not basic_match["passed"]:
return {
"status": "rejected",
"reason": basic_match["reason"],
"score": 0
}
# 2. 技能匹配度评估
skills_match = self._assess_skills_match(resume, requirements)
# 3. 经验匹配度评估
experience_match = self._assess_experience_match(resume, requirements)
# 4. 文化契合度评估
culture_match = self._assess_culture_fit(resume, requirements)
# 综合评分
total_score = (
skills_match["score"] * 0.4 +
experience_match["score"] * 0.4 +
culture_match["score"] * 0.2
)
# 决策
if total_score >= 80:
decision = "recommend"
elif total_score >= 60:
decision = "interview"
elif total_score >= 40:
decision = "consider"
else:
decision = "reject"
return {
"status": decision,
"score": total_score,
"breakdown": {
"skills": skills_match,
"experience": experience_match,
"culture": culture_match
},
"highlights": self._extract_highlights(resume),
"concerns": self._extract_concerns(resume, requirements)
}
def _assess_skills_match(self, resume: dict, requirements: dict) -> dict:
"""评估技能匹配度"""
required_skills = set(requirements.get("skills", []))
resume_skills = set(resume.get("skills", []))
matched = required_skills & resume_skills
missing = required_skills - resume_skills
match_rate = len(matched) / len(required_skills) if required_skills else 1
# 额外技能加分
extra_skills = resume_skills - required_skills
bonus = min(len(extra_skills) * 2, 10) # 最多加10分
return {
"score": min(match_rate * 100 + bonus, 100),
"matched": list(matched),
"missing": list(missing),
"bonus_points": bonus
}
async def batch_screen(self, resumes: list, job_id: str) -> dict:
"""批量筛选简历"""
results = []
for resume in resumes:
result = await self.screen_resume(resume, job_id)
results.append({
**result,
"candidate_id": resume["id"],
"name": resume["name"]
})
# 按分数排序
results.sort(key=lambda x: x["score"], reverse=True)
return {
"total": len(resumes),
"recommended": sum(1 for r in results if r["status"] == "recommend"),
"interview": sum(1 for r in results if r["status"] == "interview"),
"consider": sum(1 for r in results if r["status"] == "consider"),
"rejected": sum(1 for r in results if r["status"] == "reject"),
"candidates": results
}
成效
| 指标 | 实施前 | 实施后 | 提升 |
|---|---|---|---|
| 简历筛选时间 | 5分钟/份 | 10秒/份 | 30x |
| 候选人匹配度 | 50% | 78% | 56% |
| 招聘周期 | 45天 | 30天 | 33% |
4. 运营案例
案例 6:社交媒体运营自动化
公司规模: 品牌营销团队
业务挑战: 需要在多个平台发布内容,维护品牌形象
解决方案: 部署社交媒体运营 Agent
实现方案
class SocialMediaAgent:
"""社交媒体运营 Agent"""
def __init__(self):
self.agent = Agent(Config(
name="social_media",
role="社交媒体运营助手",
goal="自动化内容发布和互动管理"
))
self.platforms = {
"twitter": TwitterAdapter(),
"weibo": WeiboAdapter(),
"linkedin": LinkedInAdapter()
}
self.content_calendar = self._load_content_calendar()
async def publish_content(self, content: dict, platforms: list) -> dict:
"""发布内容到多个平台"""
results = {}
for platform in platforms:
if platform not in self.platforms:
continue
# 平台适配
adapted_content = self._adapt_for_platform(content, platform)
# 发布
result = await self.platforms[platform].post(adapted_content)
results[platform] = result
return {
"content_id": content["id"],
"published_to": list(results.keys()),
"results": results
}
async def manage_engagement(self, platform: str) -> dict:
"""管理社交互动"""
adapter = self.platforms[platform]
# 1. 获取提及和评论
mentions = await adapter.get_mentions()
comments = await adapter.get_comments()
# 2. 分类互动类型
categorized = self._categorize_interactions(mentions + comments)
# 3. 自动回复(简单问题)
auto_replies = []
for interaction in categorized["questions"]:
if self._can_auto_reply(interaction):
reply = await self._generate_reply(interaction)
await adapter.reply(interaction["id"], reply)
auto_replies.append(interaction["id"])
# 4. 标记需要人工处理
human_required = categorized["complaints"] + categorized["complex"]
return {
"total_interactions": len(mentions) + len(comments),
"auto_replied": len(auto_replies),
"human_required": human_required,
"sentiment_analysis": self._analyze_sentiment(categorized)
}
async def generate_report(self, platform: str, date_range: tuple) -> dict:
"""生成运营报告"""
adapter = self.platforms[platform]
# 收集数据
posts = await adapter.get_posts(date_range)
engagement = await adapter.get_engagement_stats(date_range)
followers = await adapter.get_follower_stats(date_range)
# 分析
analysis = {
"total_posts": len(posts),
"total_reach": sum(p["reach"] for p in posts),
"avg_engagement_rate": sum(p["engagement_rate"] for p in posts) / len(posts),
"top_posts": sorted(posts, key=lambda x: x["engagement"], reverse=True)[:5],
"follower_growth": followers["growth"],
"best_posting_time": self._find_best_posting_time(posts)
}
# 生成建议
suggestions = self._generate_suggestions(analysis)
return {
"platform": platform,
"date_range": date_range,
"analysis": analysis,
"suggestions": suggestions
}
成效
- 内容发布效率: 提升 5x
- 响应时间: 从 4小时 → 实时
- 用户满意度: 提升 25%
5. IT 运维案例
案例 7:自动化运维监控
公司规模: 互联网公司
业务挑战: 系统告警多,运维人员疲于应付
解决方案: 部署智能运维 Agent
实现方案
class OperationsMonitoringAgent:
"""运维监控 Agent"""
def __init__(self):
self.agent = Agent(Config(
name="ops_monitor",
role="运维监控助手",
goal="自动化监控和故障处理"
))
self.alert_handlers = {
"high_cpu": self._handle_high_cpu,
"memory_pressure": self._handle_memory_pressure,
"disk_full": self._handle_disk_full,
"service_down": self._handle_service_down
}
async def process_alert(self, alert: dict) -> dict:
"""处理告警"""
alert_type = alert["type"]
if alert_type not in self.alert_handlers:
return {
"status": "unhandled",
"alert": alert,
"message": "未知的告警类型"
}
# 执行对应的处理逻辑
handler = self.alert_handlers[alert_type]
result = await handler(alert)
# 记录处理历史
await self._log_alert_handling(alert, result)
return result
async def _handle_high_cpu(self, alert: dict) -> dict:
"""处理高 CPU 告警"""
server = alert["server"]
# 1. 检查 CPU 使用率趋势
trend = await self._get_cpu_trend(server, minutes=30)
if trend["increasing"]:
# 2. 识别 CPU 密集型进程
top_processes = await self._get_top_cpu_processes(server)
# 3. 检查是否有异常进程
suspicious = await self._identify_suspicious_processes(top_processes)
if suspicious:
# 终止可疑进程
for proc in suspicious:
await self._kill_process(server, proc["pid"])
return {
"status": "resolved",
"action": "killed_suspicious_processes",
"processes": suspicious
}
# 4. 如果是正常流量增长,发送扩容建议
return {
"status": "escalation_required",
"reason": "CPU使用率持续上升",
"suggestion": "考虑扩容服务器或优化应用",
"current_usage": alert["current_usage"],
"trend": trend
}
# 短暂峰值,观察
return {
"status": "monitoring",
"message": "CPU使用率暂时性波动,继续观察"
}
async def _handle_service_down(self, alert: dict) -> dict:
"""处理服务宕机告警"""
service = alert["service"]
# 1. 检查服务状态
status = await self._check_service_status(service)
if status["running"]:
return {
"status": "false_alert",
"message": "服务已恢复正常"
}
# 2. 尝试自动重启
restart_result = await self._restart_service(service)
if restart_result["success"]:
# 3. 验证服务恢复
health_check = await self._wait_for_healthy(service, timeout=60)
if health_check["healthy"]:
return {
"status": "resolved",
"action": "auto_restart",
"message": "服务已自动重启并恢复"
}
# 4. 需要人工介入
return {
"status": "escalation_required",
"severity": "critical",
"service": service,
"actions_tried": ["auto_restart"],
"message": "自动恢复失败,需要运维人员介入"
}
async def run_health_check(self) -> dict:
"""系统健康检查"""
results = {}
# 检查所有监控的服务
services = await self._get_monitored_services()
for service in services:
health = await self._check_service_health(service)
results[service["name"]] = health
# 生成健康报告
healthy_count = sum(1 for r in results.values() if r["healthy"])
total_count = len(results)
return {
"timestamp": datetime.now().isoformat(),
"overall_health": "healthy" if healthy_count == total_count else "degraded",
"services_healthy": healthy_count,
"services_total": total_count,
"details": results
}
成效
- 故障响应时间: 30分钟 → 2分钟
- 自动恢复率: 60%
- 告警疲劳: 减少 70%
案例总结
跨行业成功因素
| 因素 | 描述 | 成功案例 |
|---|---|---|
| 明确的目标 | 自动化价值清晰、可量化 | 所有案例 |
| 充分的测试 | 关键场景全覆盖测试 | 金融合规案例 |
| 渐进式部署 | 从试点到全面推广 | 电商案例 |
| 人机协作 | 设计合理的介入机制 | 客服案例 |
| 持续优化 | 根据反馈不断改进 | 运维案例 |
实施建议
- 选择高频、规则明确的流程 作为首批自动化目标
- 建立完善的监控和回滚机制 确保系统稳定性
- 保持人工监督通道 处理异常情况
- 收集用户反馈 持续优化 Agent 能力
- 定期评估效果 调整自动化策略